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Who teaches high school computer science and does it matter? 

Background and Context: High schools have rapidly increased the number of 

computer science (CS) courses they offer. One challenge for these expansions is 

staffing CS classrooms with qualified teachers. 

Objective: This study provides novel evidence about who teaches high school 

CS courses and what CS teacher attributes are important for ensuring that 

students have high-quality experiences in those courses.  

Method: This study uses statewide longitudinal student- and teacher-level data 

from North Carolina high schools in descriptive and regression-based analyses.  

Findings: CS courses are taught by teachers who are better qualified than 

teachers of other courses in terms of experience, education, and National Board 

Certification (NBC), though CS teachers often lack preparation to teach CS 

specifically. CS and non-CS courses have teachers with similar racial 

demographics, but CS courses are more likely to be taught by men. Teachers’ 

observable qualifications and characteristics are not consistently related to 

whether their students take or are successful on Advanced Placement (AP) CS 

exams. However, there is some evidence that teachers with more experience 

generally, more experience teaching CS, or NBC have better student outcomes.  

Implications: These findings suggest that stricter certification requirements for 

CS teachers may restrict CS course expansions unnecessarily, though they also 

point to important directions for future research on CS teacher quality. 

Keywords: computer science education; teacher quality; teacher qualifications; 

Advanced Placement 

Introduction 

Computer science (CS) education is thought to provide economic opportunity and 

general thinking skills for students and to promote economic development (Armoni & 

Gal-Ezer, 2014; Grover & Pea, 2013; McGarr et al., 2023; Rothwell, 2014). These 

arguments have gained considerable traction, driving dramatic curricular shifts as 

schools, and especially high schools, offer rapidly-growing numbers of CS courses 



2 

 

(Code.org et al., 2022; Scott et al., 2019). For example, in California between 2003 and 

2018 the number of high school CS courses offered increased from fewer than 1,000 to 

more than 5,000 (Bruno et al., 2022). 

This proliferation of CS courses has outpaced state efforts to prepare and certify 

teachers to teach CS, raising questions about how these courses will be staffed. CS 

courses are often taught by teachers with preparation and experience in a wide range of 

loosely-related content areas, such as in other science, technology, engineering, and 

math (STEM) disciplines or in career technical education (CTE) (Bruno & Lewis, 2022; 

Century et al., 2013; Delyser et al., 2018; Ni, Tian, et al., 2023). Indeed, it has been a 

long-standing concern in CS education that, to the extent that staffing challenges result 

in CS courses being taught by teachers lacking CS subject matter knowledge or 

pedagogical content knowledge, the hoped-for benefits of CS course taking may not be 

realized (Poirot & Early, 1975; Statz & Miller, 1975). Moreover, new CS courses do not 

appear to substantially reduce other STEM course offerings in schools (Bruno & Lewis, 

2022), so they may put additional strain on already-tight STEM teacher labor markets.  

How schools navigate the tension between growing demand for CS courses and 

a limited supply of specialized CS teachers is poorly understood. In fact, little is known 

even about who teaches high school CS courses, let alone whether specific teacher 

characteristics are important for the success of students taking CS, and thus for the 

success of CS curricular expansions generally. 

These considerations motivate my two research questions. First, what are the 

qualifications and characteristics of CS teachers, and how do they differ from teachers 

of non-CS courses? Like previous work I consider teacher race, gender, years of 

experience, highest level of education, and teaching licenses. I extend this work by also 

considering whether teachers hold a license related to CS specifically, their prior 
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experience teaching CS, and their National Board certification (NBC). Second, are 

teachers’ qualifications and characteristics important for students’ success in CS 

courses? To answer this question, I consider whether those qualifications and 

characteristics are predictive of students’ outcomes in a subset of CS courses for which 

there are standardized end-of-course assessments: Advanced Placement (AP) CS 

courses. 

Background and previous research 

Early efforts to expand secondary CS education recognized that a fundamental 

challenge to these expansions is the capacity of the teaching force (e.g., Deek & 

Kimmel, 1999). For instance, Poirot and Early (1975) recommended undergraduate CS 

pre-service preparation for teachers because CS-related content would be taught in 

schools in any case. The quality of that instruction would thus depend on teachers 

obtaining sufficient in-service training or pursuing graduate-level training in CS. 

Underlying these concerns was the belief that to teach CS effectively CS teachers – like 

teachers of other disciplines – would need to be proficient with both CS content and 

with methods of teaching CS (Statz & Miller, 1975; Yadav et al., 2016).  

These concerns remain salient decades later because CS courses and course 

taking continue to proliferate in high schools (Bruno et al., 2022; Code.org et al., 2022) 

and CS-specific pre-service preparation remains relatively rare for teachers (Code.org et 

al., 2022; U.S. Department of Education, Office of Postsecondary Education, 2022). 

This raises questions about who is teaching high school CS courses and whether they 

have the attributes to do so effectively. 

To date, there is little evidence about the qualifications and characteristics of 

high school CS teachers. This makes it difficult to know whether we should be 

concerned that these courses are being taught ineffectively or are putting strain on other 
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areas of the teacher labor market (e.g., by increasing demand for STEM teachers). There 

is even less evidence on the extent to which specific teacher attributes matter for 

students’ experiences and success in CS courses. I turn now to reviewing the literature 

on these topics.  

Evidence about the qualifications and characteristics of CS Teachers 

Evidence on the qualifications and characteristics of high school CS teachers is limited. 

Some nationwide evidence exists in the form of survey data. Perhaps the largest and 

most comprehensive of these are “landscape” surveys administered to CS teachers in 

the United States (U.S.) by the Kapor Center. In these surveys, less than one third of 

high school CS teachers report having an undergraduate or graduate “CS and tech 

sciences” degree (30% and 28% respectively), while 66% report a teaching credential in 

those fields and 57% report CS industry experience. Interpreting these figures is 

challenging given the range of experiences and skills these backgrounds might 

represent. For instance, “CS and tech sciences” is defined as any of CS, information and 

communications technology, information technology, engineering, networking, or 

cybersecurity (Koshy et al., 2022). Thus, the survey figures reported may represent an 

upper bound on CS teachers’ CS-specific backgrounds, suggesting that many high 

school CS teachers have little CS-specific preparation. This may be why CS teachers 

frequently report low levels of confidence in their ability to teach CS (Ni, Tian, et al., 

2023) even if they report high levels of confidence in their CS knowledge (Koshy et al., 

2021). 

Some teacher attributes appear to be important over and above the kinds of 

subject-specific specific skills that might be measurable to some extent by teachers’ 

credentials (e.g., their degrees or teaching licenses). Perhaps most notably, a rapidly-

growing body of research finds substantial benefits for students of same-race or same-
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gender teachers (Bottia et al., 2015; Dee, 2004; Gershenson et al., 2022; Holt & 

Gershenson, 2019; Lindsay & Hart, 2017). Given that evidence, and the prevailing 

underrepresentation of women and people of color in CS-related fields (John & Carnoy, 

2019), CS teachers’ races and genders may also represent important characteristics from 

a policy standpoint.  

National surveys indicate that CS teachers in the U.S. may be more 

demographically representative than teachers generally of the student population. 

Specifically, 69% of high school CS teachers identify as white in the most recent of 

these surveys, and 65% as women (Koshy et al., 2022). For comparison, approximately 

46% of high school students and 80% of secondary teachers are white (U.S. Department 

of Education, National Center for Education Statistics, 2021, 2022). Roughly 64% of 

secondary teachers are female (U.S. Department of Education, National Center for 

Education Statistics, 2021). 

Other evidence on CS teacher qualifications and characteristics comes from 

analyses of administrative data that contain information about individual teachers and 

their classrooms. A limitation of these data is that they are restricted to a single U.S. 

state and can be difficult to compare across states (e.g., due to differences in teacher 

certification requirements). However, these data often provide a more detailed portrait 

of teachers and are often not as subject to concerns about various sorts of bias that 

might arise in surveys (e.g., non-response or social desirability biases). 

Some of the most detailed of these analyses come from California (Bruno & 

Lewis, 2021, 2022). These studies find that high school CS teachers have strong general 

qualifications in terms of years of prior teaching experience and the probability of being 

fully licensed to teach or of holding a master’s degree. In fact, teachers of CS courses 

compare favorably along these measures to teachers of other courses (Bruno & Lewis, 
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2022) and across racial subgroups of students  (Bruno & Lewis, 2021). The authors 

suggest that the prevalence of teachers with strong general observable credentials may 

be attributable to the fact that credential requirements for CS teachers in California are 

very flexible. CS teachers in their data are licensed to teach a wide range of subjects 

other than CS, commonly including math, business, CTE, and science, among others 

(Bruno & Lewis, 2022). 

However, these California studies also raise two additional concerns about the 

high school CS teacher workforce. First, though half or more of non-CS course 

enrollments in California are taught by women, more than two thirds of CS course 

enrollments are taught by men. This may be a concerning issue of gender representation 

in its own right, and it contributes to boys being twice as likely as girls to have a same-

gender teacher when they enroll in CS (Bruno & Lewis, 2021). This suggests that girls 

may not be enjoying the benefits of student-teacher gender congruence that have been 

found in other contexts (Lim & Meer, 2017) as well as for female students in STEM 

specifically (Bottia et al., 2015; Carrell et al., 2010; Lim & Meer, 2020). For example, 

Carrell et al. (2010) find that while female undergraduates have lower grades than males 

in math and science courses by 0.15 standard deviations, about two-thirds of that gap is 

eliminated by random assignment to a female instructor. This high rate at which men 

teach CS courses in California is also somewhat at odds with the nationwide survey 

evidence discussed above (Koshy et al., 2022). This may indicate important variation in 

teacher characteristics across contexts or that survey respondents are not representative 

of teachers generally. 

Second, depending on the year, between 60% and 80% of high school CS 

teachers in California are white. Consequently, while approximately 80% of white 

students in CS courses have a same-race teacher, that is true for at most 23% of students 
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in other race groups, depending on the group and year. This again raises concerns that 

there are inequities in students’ demographic congruence with their teachers. There is 

evidence that student-teacher race matches benefit students across a range of social, 

emotional, and academic outcomes (Dee, 2004; Egalite et al., 2015; Egalite & Kisida, 

2018; Gershenson et al., 2022; Holt & Gershenson, 2019;  Lindsay & Hart, 2017; 

Redding, 2019). These benefits often appear to be non-trivial and persistent. For 

instance, Dee (2004) finds that having a Black teacher boosts Black students’ math and 

reading achievement by 3-6 percentile points. More strikingly, Gershenson et al. (2022) 

find that random assignment to Black teachers in elementary school increases the 

probabilities that Black students graduate high school and enroll in college by 6-9 

percentage points (13-19%). 

Evidence about whether qualifications or characteristics matter for teachers 

One challenge for interpreting evidence about the qualifications and characteristics of 

CS teachers is that the evidence linking teachers’ specific attributes to their 

effectiveness is limited. What evidence exists suggests that teachers’ observable general 

qualifications and credentials – that is, those not specific to teachers’ content areas – 

appear to be poor indicators of teacher quality. This includes qualifications that previous 

research on CS teachers has relied on, such as licensure and possession of a graduate 

degree (e.g., Bruno & Lewis, 2021, 2022).  Studies consistently find that possession of a 

graduate degree per se says little about a teacher’s instructional effectiveness (Buddin & 

Zamarro, 2009; Chingos & Peterson, 2011; Clotfelter et al., 2006, 2010; Goldhaber, 

2007; Harris & Sass, 2011; Rockoff et al., 2011), and may be a negative signal if the 

degree is not in a teacher’s subject area (Bastian, 2018). Similarly, teachers who have 

completed a traditional certification program, usually through a university and 

completing most or all of their certification coursework, internships, and exams prior to 
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being certified, are not consistently more effective than those who have not (Cantrell et 

al., 2008; Henry et al., 2014; Rockoff et al., 2011). However, recent studies have 

complicated this story by highlighting changes over time and differences across 

contexts (e.g., STEM; Mansell, 2024; Penner, 2021).  

Still, there are two general (i.e., not subject-specific) qualifications that appear to 

provide meaningful information about teacher effectiveness. First, teachers with more 

experience tend to be more effective than teachers with less experience. This seems to 

reflect both that individual teachers improve with experience, especially early career 

experience (Chingos & Peterson, 2011; Clotfelter et al., 2006, 2010; Harris & Sass, 

2011), and that less effective teachers are more likely to exit the profession than their 

more effective counterparts in at least some contexts (Goldhaber et al., 2011; Harris & 

Sass, 2011). Second, there is consistent evidence that teachers who earn certification 

from the National Board for Professional Teaching Standards (NBC) or who do better 

on the associated performance assessment are more effective than other teachers 

(Cantrell et al., 2008; Chingos & Peterson, 2011; Clotfelter et al., 2010; Cowan & 

Goldhaber, 2016; Goldhaber, 2006; Horoi & Bhai, 2018). 

There is also evidence that subject-specific preparation and experience can 

matter for teachers. For example, while possession of a graduate degree does not in 

general predict teacher effectiveness, there is some evidence that advanced degrees in a 

teacher’s subject area are more predictive (Bastian, 2018). Similarly, high school 

science teachers teaching multiple science courses make larger contributions to student 

learning in the courses aligned with their major of study (Sancassani, 2023). And while, 

as discussed above, the predictive value of licensure is weak, same-subject licensure 

and licensure exam scores are more predictive of high school teachers’ impacts on 

student achievement (Clotfelter et al., 2010). Similarly, CTE teachers’ subject-specific 
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licensure exam performance is meaningfully related to their same-subject students’ 

post-graduation incomes (Chen et al., 2022). Beyond formal training, there is also 

evidence that additional experience teaching specific subject matter improves teacher 

effectiveness in that subject, over and above the returns to general teaching experience 

(Bastian & Fortner, 2018; Cook & Mansfield, 2016). Consistent with this, CS teachers 

with more CS-specific teaching experience report higher levels of instructional 

confidence (Ni, Tian, et al., 2023). 

Summary 

In sum, the existing evidence suggests that high school CS teachers have relatively little 

subject-specific preparation or experience, and that such qualifications can be important 

for teacher effectiveness. This may be counterbalanced to some extent by relatively 

strong general qualifications, but many of these general qualifications appear to be poor 

indicators of teacher quality. CS teachers also appear to be disproportionately white and 

male, which raises additional concerns about the experiences of students from groups 

that have historically been marginalized in schools and in CS (e.g., girls and Black 

students). However, the evidence on the prevalence of these teacher characteristics is 

somewhat mixed, which may indicate data limitations or important variation across 

contexts. Previous work is also limited in the teacher characteristics it can consider and 

there is little research linking CS teacher characteristics to student outcomes. It is 

therefore hard to know the extent to which apparent limitations of school or teacher 

capacity to teach CS are translating into variation in students’ experiences in CS 

classrooms.  

This motivates my research questions. By using detailed and longitudinal data 

on teachers I can characterize CS teachers’ characteristics in ways not possible in 
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previous research (e.g., NBC or CS-specific previous teaching experience). I am also 

able to directly extend previous work using AP exam outcomes as indicators of 

students’ experiences and success in CS educational opportunities (Warner et al., 2022). 

Because I can link teachers to students, I can estimate relationships between CS teacher 

characteristics and CS students’ outcomes on AP CS exams. This means I can draw 

connections between schools’ teaching capacities and student experiences in CS. 

Data 

I use statewide longitudinal teacher- and student-level data from the North Carolina 

Education Research Data Center (NCERDC). These data include a range of information 

on both students (e.g., demographic information, disability status, English learner 

status) and teachers (e.g., education, licensure, NBC). Identifiers allow students and 

teachers to be tracked over time, and students can be linked to teachers in “course 

membership” files. This level of detail is uncommon in previous research on CS 

teachers, allowing for analyses that would not otherwise be possible. Moreover, as I 

show below, when I conduct analyses like those in previous work, I get broadly similar 

results. This suggests that while my results are likely to generalize to contexts outside of 

North Carolina.   

Course data 

The NCERDC provided course enrollment data including the school years from 2005-

2006 through 2018-2019. Because the 2005-2006 data are substantially less complete 

than in later years, my analyses begin with the 2006-2007 data. Because the same 

course may be offered multiple times within and across academic terms, I follow 

previous work in using many variables to identify course sections in which students are 

in the same classroom at the same time (Dalane & Marcotte, 2022). Specifically, I 
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consider students to be enrolled in the same section of the same course at the same time 

if I observe them with the same school, semester/term, state and local course codes, 

course title, section number, meeting code, teacher, and total number of enrolled 

students. To focus on high school courses, I exclude courses in which the mean grade of 

enrolled students is below nine. 

To isolate CS courses, I rely primarily on state course codes. I identify CS 

courses as those that have course codes indicating “Computer Science”, “Computer 

Programming”, “AP Computer Science”, and “Data Base Programming” courses in the 

state course catalogues. To accommodate cases where schools may have used more 

flexible course codes to offer CS courses outside of existing (and evolving) course 

codes, I identify other courses as CS courses if their titles reference “computer science”, 

“computer programming”, “python”, “java”, “network administration”, or “databases”. I 

present summary statistics for courses in online supplemental Table A1. 

Though not a direct answer to my research questions, note for context that high 

school CS courses have proliferated rapidly in North Carolina during the period I 

consider. This reflects trends similar to other work elsewhere, as discussed above. These 

patterns in North Carolina are illustrated in Figure 1, which shows the total number of 

CS courses offered each academic year. Despite a drop in the period after the Great 

Recession – a pattern also observed in California (Bruno et al., 2022) – the number of 

CS courses offered has increased mostly steadily. By 2018-2019, high schools in North 

Carolina were offering nearly four times as many CS courses as in 2006-2007 (1619 vs. 

423). Roughly 40% of this growth was driven by AP courses, especially AP CS 

Principles (first offered in 2016). 
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Figure 1. High school computer science (CS) courses in North Carolina. AP = 

Advanced Placement. 

Advanced Placement test data 

To measure student success in CS courses, I take advantage of the fact that a subset of 

CS courses have standardized assessments: AP courses. AP courses include curriculum 

intended to provide students with college-level learning experiences in high school. 

Many colleges and universities offer students some course credit if they take the 

standardized end-of-course test associated with the course and receive a sufficiently 

high score (usually a 3) on a 1-5 scale. The AP program has offered three CS courses. 

AP CS A emphasizes object-oriented programming, currently in Java, and is intended to 

be like what would be included in the first semester of an introductory undergraduate 

CS course. AP CS Principles covers a variety of computing-related topics at more of a 

conceptual level, with less of an emphasis on programming, and is intended to be like 

what would be included in the first semester of an introductory undergraduate 
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computing course. AP CS Principles was first offered in 2016-2017 and has expanded 

rapidly. As shown in Figure 1, in the 2018-2019 school year AP CS Principles courses 

outnumbered AP CS A courses. AP CS AB included the content of AP CS A as well as 

additional, related content, but was officially discontinued in 2008 due to low 

participation rates. I include these courses as CS courses, but do not use their associated 

test data due to the very small numbers of participating students. For all variables and 

their summary statistics used for AP CS course teachers and students, see online 

supplemental Table A2. 

Methods 

RQ1: What are CS teachers’ qualifications and characteristics, and how do they 

differ from teachers of non-CS courses? 

 To answer my first research question, I rely first on basic descriptive techniques. 

I then use simple descriptive regressions to compare teachers across CS and non-CS 

courses. In their most basic form, these regressions take the form:  

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑡𝑐𝑦 =  𝛽0 + 𝛽1𝐶𝑆𝑐 + 𝛿𝑦 + 𝜀𝑡𝑐𝑦                               (1)                    

In model 1, I predict a characteristic for teacher t teaching course c in year y, 

such as whether they have NBC. My predictor of interest is an indicator for whether the 

course is a CS course (𝐶𝑆𝑐), with 𝛽1 representing the difference between CS and non-

CS courses. I additionally control for year fixed effects (𝛿𝑦) to account for year-to-year 

changes in the teaching force. 𝛽0 can thus be interpreted as the mean of the teacher 

characteristics in non-CS courses in the omitted year (which I make the most recent 

year, 2018-2019). Previous work has highlighted differences between schools that offer 

CS courses and those that do not (Code.org Advocacy Coalition, 2020; Scott et al., 
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2019), which could drive differences in teacher characteristics between CS and non-CS 

courses. To explore this possibility, in iterations of model 1 I include school or school-

by-year fixed effects. In all models I cluster standard errors on schools to allow for the 

possibility that errors are correlated within school. 

RQ2: Do CS teachers’ qualifications and characteristics matter? 

To answer my second research question - Are teachers’ qualifications and 

characteristics important for students’ success in CS courses? – I begin by estimating 

the following model: 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑐𝑡𝑒𝑠𝑦 =  𝑿𝑡𝑦𝜶 + 𝒀𝑖𝑦𝜷 + 𝒁𝑐𝑠𝑦𝜸 + 𝛿𝑒𝑦 + 𝜀𝑖𝑐𝑡𝑒𝑠𝑦                (2)                    

In model 2, I predict an AP exam outcome for student i in classroom c in year t 

in preparation for specific AP exam e in school s in year y. I consider two outcomes. 

First, I estimate linear probability models where the outcome of interest is whether the 

student took the AP exam (as indicated by whether they have an exam score reported in 

the NCERDC data). Results are similar when using logistic regression (not shown), so I 

present results from the linear probability models for ease of interpretation. Second, for 

students who took the exam, I predict the score that they received on the exam. 

My predictors of interest are the teacher qualifications and characteristics 

included in the 𝑿𝑡𝑦 vector. These include the teacher’s years of prior experience and 

years of prior experience squared, the number of prior years in which they taught a CS 

course (i.e., years of CS teaching experience), and indicators for their highest level of 

education, their NBC, and their teaching license areas. In some models, I also include 

teachers’ race or gender and their interaction with analogous student characteristics to 

estimate effects of demographic congruence with students. 
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To account for some possible patterns along which students may sort to teachers 

(or vice versa), I control in the 𝒀𝑖𝑦 vector indicators for students’ race, gender, grade 

level, disability status, English learner status, and classification by North Carolina as 

economically disadvantaged. Given previous work finding important connections 

between students’ math preparation and their subsequent participation and success in 

CS (Grover et al., 2016; Sadik & Ottenbreit-Leftwich, 2023; Torbey et al., 2020), I also 

control for students’ 8th grade end-of-year statewide math assessment score, 

standardized within grade and year. For similar reasons, and to account for potential 

peer effects, I additionally control (in 𝒁𝑐𝑠𝑦) for the classroom-level means of those 

student characteristics. 𝛿𝑒𝑦 is an AP exam-by-year fixed effect, to account for mean 

differences between years and exams (e.g., AP CS A exam takers tend to receive lower 

scores than AP CS Principles exam takers). Because my predictors of interest are at the 

teacher level and I observe multiple students per teacher, I cluster standard errors on 

teachers. Because they include substantively different content, after pooling AP CS 

exams together, I estimate model 2 separately for AP CS A and AP CS Principles. 

This approach to estimating teacher impacts differs from approaches relying on 

value-added modeling, which derive their credibility primarily from controlling for 

students’ prior-year outcomes (Bacher-Hicks & Koedel, 2023). That is not possible here 

because students do not typically take an AP course in two consecutive years. (In rare 

cases where a student does take a given AP CS course more than once, I use only their 

first enrollment.) While I can control for prior math achievement, results derived from 

model 2 should be interpreted cautiously since there may be remaining unobserved 

differences between students that are correlated with both their exam outcomes and 

their teachers’ attributes.  
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This uncertainty motivates three robustness checks to assess the sensitivity of 

my results to the assumption that, conditional on their observable characteristics, 

students are not sorting to teachers in their AP courses in ways that bias my estimates. 

First, I control for the mean score a student received on any AP exam they took in the 

previous year. Second, I account for potential student sorting across schools by adding 

school fixed effects. Third, I additionally allow for such between-school sorting to vary 

over time by replacing the school fixed effects with school-by-year fixed effects. All 

three approaches relax assumptions about student sorting in various ways. However, 

they reduce my estimation samples, respectively, to students who take AP CS in a year 

after taking at least one other AP exam or to students in schools employing multiple AP 

CS teachers with different characteristics (over time or in a given year, depending on 

the level of fixed effects). 

Results 

Results for RQ1: What are CS teachers’ qualifications and characteristics, and 

how do they differ from teachers of non-CS courses? 

Teaching licenses held by CS teachers 

One of the most straightforward ways to understand the qualifications of CS teachers is 

to consider the licenses they hold to teach courses in specific content areas. Though 

teachers can have a wide range of specific licenses, I highlight licenses or groups of 

licenses that are either common among CS teachers or that have some substantive 

relationship to CS content.  

As shown in Figure 2, across all years, most – 67% of – CS courses in North 

Carolina have been taught by teachers holding a CTE license to teach business and 

information technology (IT) education. This is not entirely surprising, as CS courses are 
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commonly housed in Business and IT Education departments. However, other licenses 

are also common, including other CTE licenses. (Teachers can hold more than one 

license.)  

 

Figure 2. Share of computer science courses taught by teachers with various licenses. 

CTE=Career Technical Education. IT =Information Technology. 

 

Non-CTE licenses are also common for teachers of CS courses, though they are 

less common than CTE licenses. Business (non-CTE) licenses are again common; their 

prevalence and that of CTE licenses may provide some information about the vocational 

orientation of many CS courses. However, CS courses during this period were roughly 

two-and-a-half times as likely to be taught by a teacher holding a math license (18%) as 

a by a teacher with a non-CTE business license (7%).  

Though CS may intuitively be thought of as a science course, and is sometimes 

analogized to a world language (Jaschik, 2017), only a small fraction of CS courses are 

taught by teachers with any science (4%) or world language license (1%). In fact, 
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neither category of license is as common among CS course teachers as licenses to teach 

exceptional children (i.e., students who have disabilities and/or are academically gifted). 

These patterns of teacher licensure are broadly consistent with what has been 

observed in California over a similar period (Bruno & Lewis, 2022). These patterns also 

raise questions about the extent to which CS teachers have the required knowledge and 

skills to teach CS. For example, CS per se is not necessarily a fundamental or 

substantial component of other courses CTE business and IT education teachers may be 

eligible to teach. Nor is CS proficiency or coursework required to obtain that license. 

Indeed, the license most directly aligned with CS content – CTE computer 

programming – is very uncommon even among CS teachers during this period. Only 

roughly one high school CS course in 100 was taught by a teacher holding a CTE 

computer programming license. This in part reflects that CTE computer programming 

licenses have been available only in the latter few years of my data set, but it 

underscores the uncertain qualifications of CS teachers to teach CS courses. 

CS teachers’ CS-specific qualifications 

To consider how CS-specific qualifications have changed over time as CS courses have 

proliferated, Figure 3 presents three characteristics of the teachers of CS courses over 

time. First, the prevalence of CTE computer programming licenses has increased since 

they were first offered, though they remain uncommon even in the latest year for which 

I have data. In 2016-2017, 1.9% of CS courses were taught by a teacher holding a CTE 

computer programming license, rising to 3.6% by 2018-2019.  
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Figure 3. Computer science (CS)-specific qualifications of teachers of CS courses. The 

license for Career Technical Education (CTE) Computer Programming was offered only 

in recent years. Teachers’ prior teaching experiences are observed only as far back as 

2006-2007. 

 

Second, as discussed above, licenses held by teachers are imperfect indicators of 

quality. I therefore also consider in Figure 3 the extent to which CS courses are taught 

by teachers with prior experience teaching CS courses. As was also discussed above, 

such subject-specific experience seems to matter for teachers and could mitigate gaps in 

teacher knowledge that might be inferred from their licensure. Perhaps encouragingly, 

even in 2007-2008, over half of CS courses were taught by teachers I also observed 

teaching CS in the previous year (i.e., the first year of my data). That rate if anything 

has increased somewhat, suggesting teachers who begin teaching CS often stay. This is 

also reflected in the mean number of prior years in which I observe them teaching CS 

courses, which increased from 1.2 in 2008-2009 to a high of 3.6 in 2015-2016. These 
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figures are necessarily underestimates since teachers may have accumulated experience 

prior to 2006-2007 that I do not observe. 

CS teachers’ prior teaching experience declines after 2015-2016. That does not 

obviously correspond to a sudden increase in the availability of CS courses (Figure 1). 

However, it does correspond to the introduction and growth of AP CS Principles 

courses. Given that this course was designed to broaden participation in CS coursework 

among students (Sax et al., 2020), it may be similarly attracting a different group of 

teachers. 

Teachers of CS courses compared to teachers of non-CS courses 

If recruiting and retaining teachers with strong CS backgrounds is a challenge, flexible 

licensure requirements for CS teachers may be appropriate even if they result in patterns 

of licensure that raise doubts about CS teachers’ CS-specific teaching ability. This is 

because stricter authorization requirements may prevent CS courses from being offered 

at all, and more flexible requirements may provide a larger pool of potential teachers to 

draw from who have other strong qualifications or other important characteristics. I test 

for these other qualifications and characteristics by comparing the characteristics of 

teachers (at the course level) between CS courses and other courses. Table 1 presents 

associated regression results for teachers’ races, gender, prior teaching experience, 

possession of a graduate degree, and NBC accounting for year, school and year, or 

school-by-year fixed effects. I indicate statistical significance at p values as high as p < 

.1. This does not necessarily indicate substantive importance, particularly with the large 

samples I use to answer my first research question. However, this allows me to convey 

information about marginal statistical significance and maintains consistency with the 

results for my second research question (which relies on substantially smaller samples, 
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with consequently reduced statistical power). 
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As shown in the top panel of Table 1, teachers of CS and non-CS courses are 

largely similar in terms of race. Because 2018-2019 is the omitted category of year 

fixed effects, the constant can be interpreted as the mean for non-CS courses in the most 

recent year for which I have data. Roughly 78% of non-CS teachers were white in 2018-

2019, and the difference with CS courses is statistically and practically insignificant 

(column 10). Differences for other race groups are similarly small and insignificant. 

These patterns also don’t change when comparing courses within school or school-and-

year. The lone exception is that when controlling for school or school-by-year fixed 

effects, CS courses are about 3 percentage points less likely than other courses to be 

taught by white teachers (columns 11 and 12) and equivalently more likely to be taught 

by Black teachers (columns 5 and 6). Though these differences are at most marginally 

statistically significant, they represent a non-trivial increase in the probability that CS 

courses are taught by a Black teacher relative to the 2018-2019 baseline for non-CS 

courses (17 percentage points).  

These results suggest that teacher diversity challenges are not uniquely serious 

in CS courses. Still, this lack of diversity may deter students from groups historically 

marginalized in CS-related fields from participating in CS courses and echoes previous 

work finding that even when students of color enroll in CS courses they are highly 

unlikely to enjoy a same-race teacher match (Bruno & Lewis, 2021). This also previews 

challenges I encounter when estimating the effects of such matches for CS students 

when addressing my second research question, discussed further below. 

Unlike with race, the gender of CS course teachers is substantially different than 

in non-CS courses. Overall, CS courses during this time are about nine percentage 

points less likely to be taught by a woman than are non-CS courses (for which about 

60% of teachers were women in 2018-2019, column 13). That difference shrinks only 
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slightly when comparing courses in the same school (column 14) or school-and-year 

(column 15). This is a substantially smaller gender gap between CS and non-CS courses 

than is observed in California, which is sometimes as large as 30 percentage points 

(Bruno & Lewis, 2021). Indeed, this gap implies that in North Carolina the CS teacher 

population is more like the high school student population in terms of gender – roughly 

50/50 – than is the high school teacher population as a whole. Given the potential 

benefits of student-teacher gender match for girls in STEM education and society-wide 

patterns of female underrepresentation in CS-related fields, the relative gender parity of 

CS teachers in North Carolina – both overall and compared to California – warrants 

further study. 

Previous work has found in California that CS courses are taught by teachers 

who are about as experienced as teachers of other courses, and somewhat more likely to 

have a graduate degree (Bruno & Lewis, 2022). In North Carolina, I find that CS 

courses are taught by teachers with even stronger relative qualifications by these 

measures, as well as by NBC. The mean CS course in 2018-2019 was taught by a 

teacher with more than three additional years of prior teaching experience than the mean 

non-CS course (column 16). CS courses were also 24 percentage points more likely 

than non-CS courses to be taught by a teacher with a graduate degree (column 19) and 

almost eight percentage points more likely to be taught by a teacher with NBC (column 

22). These gaps are also quite large in proportional terms, amounting to differences 

favoring CS courses of 24% for years of experience, 57% for graduate degrees, and 

64% for NBC. Moreover, this does not simply reflect CS courses being offered 

disproportionately at more advantaged schools with more highly qualified staff. In no 

case does controlling even for school-by-year fixed effects reduce these gaps by even 

one third, and the gap in teacher experience is almost entirely unaffected by this 
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adjustment (columns 18, 21, and 24). In other words, even compared to other courses 

being taught at the same time in the same school, CS courses are taught by teachers who 

are substantially more experienced, more highly educated, and more likely to be NBC 

than teachers of other courses.  

Taken together, these results suggest that even when CS courses are new, they 

are not being taught by new teachers. Rather, they are taught by relatively veteran staff 

transitioning into a new content area. Consequently, CS teachers look like other 

teachers in many respects (e.g., race), and often have relatively strong general 

qualifications (e.g., experience and NBC) even if they do not necessarily have CS-

specific background or formal preparation (e.g., in terms of licensure). Whether this 

pattern is good or bad on balance is not obvious, in part because it is not clear which 

attributes are most important in CS teachers. I turn now to my second research question, 

which explores precisely this issue. 

Results for RQ2: Do CS teachers’ qualifications and characteristics matter? 

The remaining tables predict student outcomes in AP CS courses as a function of 

teacher characteristics. I assume that positive impacts on student exam taking with non-

negative impacts on exam scores indicate a net improvement in student outcomes 

because the marginal AP exam taker is less well prepared for the exam than the average 

exam taker. Considering test taking separately from scores may provide suggestive 

evidence about the nature and mechanism of teacher impacts, if any (e.g., whether 

impacts are on student learning or attitudes). Each table presents results for AP CS A 

and AP CS Principles courses combined, as well as separately, and then presents results 

with my additional controls as robustness checks, as described above. However, 

because there are fewer AP CS Principles students in my sample, I am unable to 

estimate models for students in those courses that include school or school-by-year 
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fixed effects. Even my other estimates for AP CS Principles students should be 

interpreted cautiously since they include relatively small numbers of students and, 

especially, teachers. For similar reasons, my estimates when combining both AP 

courses are driven primarily by students and teachers in AP CS A courses. 

Teacher qualifications 

Tables 2 and 3 present results from model 2, predicting whether students in AP CS 

courses take the associated AP exam (Table 2) and, if they take the exam, their score 

(Table 3). Column numbers represent the same model specification in both tables.  

Teaching experience. Consistent with prior work, my primary results (column 1 in 

Tables 2 and 3) suggest that there are positive-but-diminishing returns to teacher 

experience. Given the presence of the squared experience term, the coefficient on years 

of prior teaching experience can be roughly interpreted as implying that a teacher’s first 

year of experience is associated with an increase of 1.6 percentage points in the 

probability that their AP CS students take the associated AP exam and 0.05 points 

higher scores among exam takers on the 1-5 scale. For comparison, 74% of AP CS 

enrollments in my sample result in an exam being taken, with a mean exam score of 

about 2.5 (see supplemental online Table A2). The coefficients on the squared 

experience terms are small and negative, consistent with smaller experience returns in 

later years, though that estimate is statistically significant only for exam scores. These 

results are mostly quantitatively and qualitatively consistent across the two AP exams, 

though less precisely estimated (columns 5 and 9). 
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Table 2. Regressions predicting whether students in Advanced Placement computer 

science (AP CS) courses take the AP exam. 

 Both Tests  APCS A  APCS Principles 

 (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) 

Prior Experience (Years) 0.016+ 0.021* 0.011 0.016  0.013 0.015 0.012 0.001  0.020 0.039+ 

 (0.008) (0.009) (0.010) (0.020)  (0.009) (0.009) (0.010) (0.022)  (0.021) (0.019) 

             

Experience Squared -0.000 -0.001* -0.000 -0.001  -0.000 -0.000 -0.000 -0.000  -0.000 -0.001 

 (0.000) (0.000) (0.000) (0.001)  (0.000) (0.000) (0.000) (0.001)  (0.001) (0.001) 

             

CS Teaching  0.015* 0.019** 0.010 0.009  0.018* 0.023** -0.010 0.007  0.031 0.038+ 

Experience (Years) (0.007) (0.006) (0.014) (0.029)  (0.007) (0.007) (0.015) (0.038)  (0.019) (0.022) 

             

Has Graduate  -0.110* -0.131** -0.097 0.360+  -0.130* -0.163** -0.008 0.293  0.343** 0.188+ 

Degree (0.049) (0.045) (0.075) (0.185)  (0.053) (0.054) (0.077) (0.205)  (0.120) (0.097) 

             

National Board  0.110* 0.108* 0.061 -0.114  0.105* 0.105* 0.053 -0.189  -0.061 -0.041 

Certification (0.043) (0.044) (0.071) (0.108)  (0.047) (0.051) (0.066) (0.181)  (0.103) (0.073) 

             

Career Technical Education (CTE) Licenses Relative to CTE Business & IT Education Only 

Programming +  -0.101 -0.306*** 0.023   -0.077 -0.220** 0.024   0.299 -0.129 

Business & IT (0.091) (0.074) (0.134)   (0.089) (0.070) (0.149)   (0.242) (0.241) 

             

Technology Engineering  -0.066 -0.092 0.319+   0.124 0.104 0.283   -0.111 -0.069 

& Design Only (0.134) (0.141) (0.182)   (0.076) (0.072) (0.192)   (0.206) (0.205) 

             

No CTE Licenses -0.059 -0.080 -0.042 -0.061  -0.054 -0.038 -0.055 0.223*  0.350+ 0.130 

 (0.060) (0.054) (0.119) (0.127)  (0.070) (0.066) (0.137) (0.089)  (0.177) (0.171) 

             

Other CTE License  -0.106+ -0.011 -0.105 -0.274*  -0.069 0.040 -0.096 -0.125  0.105 0.022 

Combinations (0.055) (0.048) (0.083) (0.105)  (0.066) (0.066) (0.079) (0.082)  (0.128) (0.112) 

             

Non-CTE Licenses             

Math 0.009 0.093+ -0.131 -0.037  -0.006 0.038 -0.163 -0.356*  -0.270** -0.048 

 (0.058) (0.048) (0.115) (0.118)  (0.070) (0.057) (0.118) (0.162)  (0.096) (0.085) 

             

Science -0.278* -0.309 -0.293+ -1.123**  -0.234 -0.451* 0.086 -0.345  -0.604*** -0.453** 

 (0.134) (0.191) (0.158) (0.391)  (0.148) (0.190) (0.065) (0.353)  (0.100) (0.157) 

             

Exceptional Children -0.073 -0.031 0.290* -0.099  -0.058 -0.016 0.305** -0.116    

 (0.052) (0.061) (0.119) (0.158)  (0.056) (0.072) (0.106) (0.137)    

             

World Language 0.200* 0.033 0.632*** 0.315  0.224* 0.070 0.572*** 0.010  -0.064 -0.131 

 (0.093) (0.055) (0.144) (0.201)  (0.092) (0.072) (0.140) (0.248)  (0.151) (0.107) 

             

Business -0.255*** -0.254** 0.126 -0.188  -0.314*** -0.300** 0.142 -0.003  0.108 0.004 

 (0.064) (0.079) (0.098) (0.155)  (0.071) (0.091) (0.108) (0.172)  (0.205) (0.235) 

             

Other 0.080+ 0.148** -0.040 -0.189  0.092+ 0.151** -0.103 -0.350+  0.013 0.073 

 (0.047) (0.047) (0.090) (0.154)  (0.052) (0.049) (0.096) (0.198)  (0.094) (0.092) 

             

Mean Prior Year AP Scores  -0.013+     -0.015+     0.005 

  (0.007)     (0.008)     (0.021) 

School FEs   X     X     

School-by-Year FEs    X     X    

Observations 5361 2559 5166 5048  4600 2213 4401 4291  760 346 

Teachers 169 135 157 142  149 117 135 122  37 33 

Adj. R-sq. 0.20 0.21 0.40 0.48  0.20 0.20 0.41 0.49  0.41 0.51 

Note. Standard errors clustered on teachers in parentheses. All models are linear regressions and control 

for exam-by-year fixed effects (FEs); student race, gender, grade level, disability status, economic 

disadvantage, English learner status, and 8th grade math scores, as well as classroom means for those 

variables. + p<.1, * p<.05, ** p<.01, *** p<.001 
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Table 3. Regressions predicting scores on Advanced Placement computer science (AP 

CS) exams. 

 Both Tests  APCS A  APCS Principles 

 (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) 

Prior Experience (Years) 0.047* 0.051* -0.001 -0.005  0.037+ 0.036+ 0.004 0.027  0.005 -0.015 

 (0.020) (0.021) (0.023) (0.049)  (0.019) (0.019) (0.024) (0.059)  (0.062) (0.081) 

             

Experience Squared -0.001* -0.002** -0.000 0.001  -0.001* -0.001* -0.000 0.000  -0.000 0.000 

 (0.001) (0.001) (0.001) (0.002)  (0.001) (0.001) (0.001) (0.002)  (0.002) (0.003) 

             

Prior CS Teaching  0.060** 0.069** 0.048 -0.153**  0.080*** 0.086*** 0.064* -0.198*  -0.061 -0.052 

Experience (Years) (0.022) (0.022) (0.029) (0.057)  (0.023) (0.021) (0.030) (0.092)  (0.072) (0.102) 

             

Has Graduate Degree -0.024 0.087 -0.315 0.985*  -0.095 0.001 -0.407+ 0.827  0.037 0.182 

 (0.150) (0.152) (0.221) (0.486)  (0.153) (0.155) (0.205) (0.524)  (0.254) (0.307) 

             

National Board Certification 0.129 0.080 -0.085 -0.119  0.154 0.133 -0.074 0.337  -0.044 -0.107 

 (0.147) (0.130) (0.127) (0.197)  (0.182) (0.139) (0.130) (0.428)  (0.282) (0.360) 

             

Career Technical Education (CTE) Licenses Relative to CTE Business & IT Education Only 

Programming +  0.244 0.730** -0.859***   0.743*** 1.569*** -0.546*   0.670 1.524+ 

Business & IT (0.219) (0.228) (0.239)   (0.220) (0.217) (0.215)   (0.595) (0.815) 

             

Technology Engineering  0.684*** 0.750*** -0.026   0.748*** 0.742*** -0.036   -0.460 -0.212 

& Design Only (0.185) (0.156) (0.333)   (0.213) (0.161) (0.350)   (0.655) (0.815) 

             

No CTE Licenses 0.687*** 0.721*** -0.082 0.351+  0.792*** 0.834*** -0.137 -0.007  0.495 0.495 

 (0.176) (0.171) (0.211) (0.184)  (0.182) (0.183) (0.201) (0.462)  (0.328) (0.453) 

             

Other CTE License  0.160 0.150 -0.334* -0.002  0.261+ 0.243+ -0.491** -0.045  -0.063 0.140 

Combinations (0.136) (0.142) (0.167) (0.352)  (0.145) (0.140) (0.152) (0.395)  (0.337) (0.451) 

             

Non-CTE Licenses             

Math 0.309+ 0.293+ 0.297+ 0.116  0.241 0.275 0.275 0.680  0.314 0.070 

 (0.174) (0.155) (0.163) (0.473)  (0.189) (0.169) (0.174) (0.768)  (0.246) (0.249) 

             

Science -0.363 -0.273 -0.105 -2.400**  -0.254 0.325 -0.194 -3.124**  -1.060+ -1.159 

 (0.246) (0.450) (0.263) (0.778)  (0.205) (0.371) (0.326) (0.952)  (0.557) (0.733) 

             

Exceptional Children 0.906*** 0.658** -0.033 -0.407  0.898*** 0.669** 0.060 -0.276    

 (0.192) (0.248) (0.337) (0.559)  (0.197) (0.239) (0.369) (0.619)    

             

World Language -0.323 -0.570* -0.068 -1.394+  -0.440+ -0.642** 0.127 -0.755  0.216 -0.020 

 (0.261) (0.282) (0.291) (0.788)  (0.227) (0.227) (0.334) (0.910)  (0.467) (0.539) 

             

Business 0.091 0.185 -0.162 1.203*  0.072 0.162 0.014 0.953  -0.795 -0.024 

 (0.214) (0.174) (0.221) (0.510)  (0.196) (0.170) (0.241) (0.604)  (0.633) (0.903) 

             

Other 0.132 0.002 0.245 -0.997**  0.204 0.108 0.277 -0.451  -0.513+ -0.602+ 

 (0.159) (0.139) (0.217) (0.352)  (0.161) (0.130) (0.219) (0.404)  (0.262) (0.340) 

             

Mean Prior Year AP Scores  0.419***     0.422***     0.347*** 

  (0.031)     (0.037)     (0.047) 

School FEs   X     X     

School-by-Year FEs    X     X    

Observations 3997 2186 3836 3740  3476 1908 3311 3221  520 278 

Teachers 147 116 137 125  127 97 115 105  32 30 

Adj. R-sq. 0.45 0.52 0.52 0.54  0.46 0.54 0.52 0.54  0.39 0.41 

Note. Standard errors clustered on teachers in parentheses. All models are linear regressions and control for exam-by-

year fixed effects (FEs); student race, gender, grade level, disability status, economic disadvantage, English learner 

status, and 8th grade math scores, as well as classroom means for those variables. + p<.1, * p<.05, ** p<.01, *** 

p<.001 
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Even net of overall teaching experience, additional years of CS teaching 

experience are also positively related to AP CS student outcomes. An additional year of 

CS teaching experience for an AP CS teacher predicts that their students are 1.5 

percentage points more likely to take the AP exam and to score another 0.06 points 

higher. These estimates are very similar in magnitude to what I estimate for very early-

career experience suggesting that subject-specific experience is very important for CS 

teachers. This may not be surprising if, as discussed above, CS teachers enter their 

classrooms without substantial CS backgrounds and need to learn a great deal on the 

job.  

Estimates from models that consider each AP course separately suggest some 

differences between them. CS-specific teaching experience is positively related to test 

taking for both courses; the estimate for AP CS Principles is substantially larger in 

magnitude, but also much less precisely estimated. At the same time, the estimated 

impact on scores for exam takers is driven by AP CS A. This may reflect the relatively 

more technical nature of AP CS A content (compared to AP CS Principles) requiring 

more on-the-job learning. 

These results are highly robust to controlling for students’ mean prior-year AP 

exam scores (column 2 in each table). That my estimates of the impacts of teacher 

experience are cleanly in line with prior research is reassuring since I cannot otherwise 

give them a straightforward causal interpretation. Yet these results are quite sensitive to 

the inclusion of additional fixed effects (columns 3 and 4). This suggests some reason to 

be concerned that my estimated impacts of teacher characteristics are biased by 

unobserved differences between students. However, given previous research 

consistently finding positive returns to teacher experience, this may also suggest that I 

do not have sufficient within-school variation to credibly fit these models.  
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Graduate degrees. Despite estimating numerous models for multiple outcomes, I find 

little evidence that a teacher’s graduate degree is important for student outcomes. In my 

baseline models combining AP CS courses, when a student’s teacher has a master’s 

degree (or more) they are 11 percentage points less likely to take the AP exam, with 

essentially no apparent difference in exam scores. Controlling for prior AP exam scores 

or school fixed effects (i.e., comparing only students in the same school, but exposed to 

different teacher characteristics) makes little difference. This suggests limited bias from 

unobserved differences between students and is very consistent with the previous work 

discussed above. However, I note two exceptions. First, controlling for school-by-year 

fixed effects (i.e., comparing only students in the same school in the same year) makes 

the estimated impacts of a graduate degree large and positive, both overall and for AP 

CS A specifically. Second, teacher graduate degrees are associated with substantially 

higher test taking rates for AP CS Principles students (though not higher scores). In both 

cases, limited identifying variation makes the estimates hard to interpret, but they 

recommend at least some degree of caution about interpreting my other estimates, and 

may be consistent with previous research (also discussed above) finding that the 

importance of graduate degrees may vary (e.g., based on the content of the degree). 

National Board Certification. Consistent with previous research, I find some evidence 

that NBC is a meaningful predictor of AP CS students’ outcomes. In my baseline 

models (columns 1 of Tables 2 and 3), students whose teacher is NBC are 11 percentage 

points more likely to take the AP exam than other students. Teacher NBC is not 

significantly related to student exam scores, but perhaps more importantly the 

coefficient is large and positive and this is at least consistent with increases in student 

exam taking not being driven by additional unprepared students taking the exam. These 

results are robust to controlling for students’ prior AP exam scores, but two important 
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caveats are in order. First, these results are again sensitive to the inclusion of additional 

fixed effects, which cause my estimates to become smaller or switch sign. This suggests 

students may differ between schools or over time in important ways that I do not 

observe and that are correlated with these teacher attributes. Second, any apparent 

benefits of NBC are driven by AP CS A; I find no (or even slightly negative) 

relationships to student outcomes in AP CS Principles. It could be that AP CS A’s more 

technical content is more instructionally demanding, raising the salience of the teacher 

skills reflected in NBC. 

Licensure areas. Because potential combinations of teacher licenses are numerous, I 

simplify their inclusion in my models by grouping licenses. First, I consider all CTE 

licenses, and group teachers into five mutually exclusive groups based on which 

combination of CTE licenses (if any) they hold, each represented with a dummy 

variable. I omit teachers holding only a business and IT education license (and no other 

CTE licenses) as a comparison group, since this represents a somewhat “typical” CS 

teacher. I then include dummy variables for the salient groups of non-CTE licenses I 

consider above, indicating if teachers hold any math, science, exceptional children, 

world language, business, or other non-CTE license, respectively. 

To summarize briefly, I find at most mixed evidence that teachers’ licenses 

matter for student outcomes in AP CS courses. Compared to students of teachers 

holding no CTE licenses except business and IT education, students of teachers with 

other combinations of CTE licenses (or no CTE licenses) are not consistently more or 

less likely to take the AP CS exam in their course. A possible exception is that students 

whose teachers instead have a CTE technology engineering and design license are 

perhaps more likely to take the exam in AP CS A courses (columns 5-7 of Table 2). 

Those students also have higher exam scores on average, particularly in AP CS A 
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(columns 5-7 of Table 2). However, I lack sufficient variation to estimate those 

relationships in the presence of school-by-year fixed effects and, if anything, the 

opposite is true in AP CS Principles. 

Though they are not more likely (and are perhaps less likely) to take the exam, 

compared to students whose teacher has only a CTE business and IT education license, 

students who take the exam have higher scores on average when their teacher either 

additionally has a CTE computer programming license or has no CTE licenses at all. 

Given the somewhat ambiguous relationship between business and IT education license 

requirements and CS proficiency, this is perhaps what would be expected. However, it 

is less obvious why holding – or being able to hold – these licenses would improve 

student test scores but not their test taking rates and these estimates are again sensitive 

to the inclusion of additional fixed effects (if they can be estimated at all; as noted 

above, CTE computer programming licenses are rare).  

I also do not find clear evidence that non-CTE licenses provide meaningful 

information about the effectiveness of CS teachers. I find some evidence that students 

whose teachers hold business and science licenses are less likely to take the AP exam at 

the conclusion of their courses. And I find some suggestive evidence that students 

whose teachers hold math or exceptional children licenses receive higher scores when 

they take their AP exams. However, estimates for these licenses are not consistently 

robust across model specifications. 

Student-teacher demographic congruence 

Finally, I consider whether, over and above teachers’ more “objective” qualifications to 

teach CS, their demographic congruence with their students matters for their students’ 

outcomes. I consider congruence separately for gender and for race. In each case, I add 

two terms to model 2: an indicator of the teacher’s gender or race and a term interacting 
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the teacher’s gender or race with the student’s. Results are presented in Tables 4 (for 

gender) and 5 (for race). For simplicity, I include only the gender and race predictors, 

though models are otherwise specified as before. The top panel of each table presents 

results predicting whether students took the AP exam, and the bottom table presents 

results predicting scores among students who took the exam.  

Table 4. Students’ Advanced Placement computer science (AP CS) outcomes as a 

function of student-teacher gender congruence. 

 Both Tests  APCS A  APCS Principles 

Took AP Exam (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) 

Teacher is Female 0.028 0.020 -0.001 -0.125  0.059 0.069 0.002 -0.212  0.106+ 0.013 

 (0.048) (0.056) (0.054) (0.141)  (0.053) (0.059) (0.064) (0.136)  (0.060) (0.064) 

             

Student is Male 0.021 0.045 0.019 0.020  0.041 0.054 0.028 0.035  -0.064 0.005 

 (0.022) (0.029) (0.020) (0.020)  (0.025) (0.033) (0.022) (0.023)  (0.049) (0.046) 

             

Male Student x  -0.055+ -0.058 -0.046+ -0.050+  -0.074* -0.066 -0.052+ -0.065*  0.022 -0.051 

Female Teacher (0.030) (0.036) (0.025) (0.026)  (0.034) (0.040) (0.029) (0.029)  (0.060) (0.056) 

             

Mean Prior Year   -0.014+     -0.015+     0.007 

AP Scores  (0.008)     (0.008)     (0.022) 

             

School FEs   X     X     

School-by-Year FEs    X     X    

Observations 5356 2556 5161 5043  4595 2210 4396 4286  760 346 

Teachers 168 134 156 141  148 116 134 121  37 33 

Adj. R-sq. 0.20 0.21 0.40 0.48  0.20 0.20 0.41 0.49  0.41 0.51 

 Both Tests  APCS A  APCS Principles 

AP Exam Score (11) (12) (13) (14)  (15) (16) (17) (18)  (19) (20) 

Teacher is Female -0.109 -0.173 -0.021 0.615  -0.031 -0.097 0.033 0.706  -0.597* -1.072*** 

 (0.148) (0.137) (0.137) (0.401)  (0.151) (0.139) (0.153) (0.758)  (0.234) (0.220) 

             

Student is Male 0.157** 0.155* 0.196*** 0.211***  0.176** 0.160* 0.215*** 0.234***  0.163 0.194 

 (0.056) (0.062) (0.042) (0.042)  (0.057) (0.063) (0.045) (0.047)  (0.127) (0.119) 

             

Male Student x  0.051 0.059 -0.025 -0.073  0.010 0.027 -0.053 -0.110  0.001 0.022 

Female Teacher (0.081) (0.092) (0.064) (0.072)  (0.078) (0.093) (0.069) (0.080)  (0.209) (0.222) 

             

Mean Prior Year   0.415***     0.420***     0.350*** 

AP Scores  (0.032)     (0.038)     (0.049) 

             

School FEs   X     X     

School-by-Year FEs    X     X    

Observations 3996 2186 3835 3740  3475 1908 3311 3221  520 278 

Teachers 146 116 136 125  126 97 115 105  32 30 

Adj. R-sq. 0.45 0.52 0.52 0.54  0.46 0.53 0.52 0.54  0.42 0.46 

Note. Standard errors clustered on teachers in parentheses. All models are defined as in tables 2 and 3 

except that teacher gender and its interaction with student gender are included as predictors. 

+ p<.1, * p<.05, ** p<.01, *** p<.001 
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Table 5. Students’ Advanced Placement computer science (AP CS) outcomes as a 

function of student-teacher race congruence. 

 Both Tests  APCS A  APCS Principles 

Took AP Exam (1) (2) (3) (4)  (5) (6) (7) (8)  (9) (10) 

Teacher is Black -0.044 -0.174 0.136+ -0.023  0.036 -0.091 0.179* -0.055  -0.486** -0.501** 

 (0.096) (0.114) (0.071) (0.087)  (0.115) (0.100) (0.073) (0.086)  (0.167) (0.156) 

             

Student is White 0.013 -0.022 0.037 0.049*  0.018 0.001 0.036 0.046+  0.029 -0.178* 

 (0.026) (0.031) (0.025) (0.024)  (0.027) (0.031) (0.026) (0.026)  (0.058) (0.076) 

             

White Student x  -0.032 0.037 -0.063 -0.092*  -0.039 0.065 -0.065 -0.095+  0.048 0.196* 

Black Teacher (0.075) (0.104) (0.042) (0.043)  (0.089) (0.102) (0.048) (0.051)  (0.099) (0.074) 

             

Mean Prior Year   -0.008     -0.008     0.006 

AP Scores  (0.009)     (0.009)     (0.027) 

             

School FEs   X     X     

             

School-by-Year FEs    X     X    

Observations 3980 1828 3817 3707  3452 1573 3284 3181  528 254 

Teachers 147 118 137 121  129 101 117 103  33 29 

Adj. R-sq. 0.19 0.22 0.40 0.46  0.20 0.22 0.42 0.49  0.41 0.55 

 Both Tests  APCS A  APCS Principles 

AP Exam Score (11) (12) (13) (14)  (15) (16) (17) (18)  (19) (20) 

Teacher is Black 0.149 -0.163 0.298 1.012**  0.238 -0.099 0.282 0.861*  -1.040+ -1.175 

 (0.251) (0.312) (0.209) (0.327)  (0.301) (0.410) (0.207) (0.339)  (0.560) (0.804) 

             

Student is White 0.285*** 0.307* 0.272** 0.270**  0.252** 0.322* 0.238** 0.226*  0.569** 0.442 

 (0.082) (0.127) (0.084) (0.098)  (0.085) (0.135) (0.086) (0.105)  (0.175) (0.324) 

             

White Student x  -0.315 -0.150 -0.285 -0.344  -0.334 -0.175 -0.277 -0.325  2.122** 1.702+ 

Black Teacher (0.204) (0.252) (0.209) (0.252)  (0.219) (0.297) (0.218) (0.264)  (0.741) (0.989) 

             

Mean Prior Year   0.429***     0.437***     0.338*** 

AP Scores  (0.041)     (0.047)     (0.075) 

             

School FEs   X     X     

             

School-by-Year FEs    X     X    

Observations 2949 1550 2808 2725  2563 1342 2419 2339  386 207 

Teachers 128 101 120 108  111 84 102 91  27 26 

Adj. R-sq. 0.44 0.51 0.52 0.54  0.44 0.52 0.51 0.54  0.43 0.46 

Note. Standard errors clustered on teachers in parentheses. All models are defined as in tables 2 and 

3except that teacher race and its interaction with student race are included as predictors, and estimation 

samples are limited to white and Black students with white or Black teachers. 

+ p<.1, * p<.05, ** p<.01, *** p<.001 

Gender congruence. As shown in Table 4, I find little evidence that girls in AP CS 

courses benefit from having a female teacher. Because of the presence of the term 

interacting student and teacher gender, the coefficient on the indicator for female 

teachers can be interpreted as the relationship between having a female teacher and 

course outcomes for girls. For girls, having a female teacher rather than a male teacher 
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is only positively and marginally significantly related to exam taking in AP CS 

Principles (column 9), and even that result is sensitive to the inclusion of student’s prior 

exam scores (column 10). The relationship for girls between having a female teacher 

and exam scores (the bottom panel of Table 4) is if anything more negative.  

The evidence for boys is less clear. The coefficients on the indicator for male 

students estimates differences in outcomes between boys and girls in the presence of a 

male teacher. When taught by male teachers, boys are perhaps more likely than girls to 

take the AP exam, at least in AP CS A, where the difference amounts to 2.8-5.4 

percentage points depending on the model but is at most marginally significant 

statistically (columns 5-8). However, as shown in columns 11-20, in male teacher’s 

classrooms boys have substantially higher AP exam scores, by 0.16-0.23 points, and 

this is consistent across models and exams (though estimates for AP CS Principles are 

much more imprecise). In the presence of a female teacher, the test taking advantage for 

boys is substantially and statistically significantly smaller. In fact, the coefficients on 

the interaction terms in the top panel of Table 4 imply that the gap switches directions 

in most models (i.e., favors girls) when the teacher is female, though is not consistently 

significantly different from zero. This is consistent with boys deriving some benefit 

from a same-gender CS teacher but this does not appear to translate into higher exam 

scores for exam takers. As shown by the coefficients on the interaction terms in the 

bottom panel of Table 4, the higher scores observed for boys, relative to girls, who take 

the AP exams are not significantly different when the teacher is female. 

Race congruence. Table 5 presents analogous results for student-teacher race match. 

These models include only white and Black students and teachers because the number 

of matches for other groups of students is extremely small. As with gender, I find little 

evidence of race congruence effects. 
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Similar to Table 4, because of the presence of the interaction term the coefficient 

on the indicator for Black teachers in Table 5 estimates the effect for Black students of 

having a Black, rather than white, teacher. Thus, for Black students, having a Black 

teacher often predicts no change in the probability of taking the AP exam and, if 

anything, the coefficients are more likely to be negative than positive. This is 

particularly true for AP CS Principles, where Black students are 49 percentage points 

less likely to take the exam when they have a Black teacher (column 9), and to score 

more than 1 point lower if they do take the exam (column 19). Given the small size of 

my estimation samples for AP CS Principles, these results should be interpreted 

particularly cautiously; a plausible takeaway from Table 5 is that the race of Black 

students’ AP CS teachers is mostly unrelated to their AP exam outcomes. 

The coefficients on the indicators for white students illustrate that, ceteris 

paribus, white students are perhaps slightly more likely than Black students to take the 

AP exam in the presence of a white teacher (columns 1-10) and to score 0.23-0.57 

points higher on average when they take the exam (column 11-20). This reflects 

generally better exam outcomes, rather than any particular racial match benefits, for 

white students. The coefficients on the interaction terms are generally small and 

statistically insignificant when predicting exam taking. Coefficients are somewhat 

larger when predicting exam scores, in some cases erasing the Black-white gap 

indicated by the coefficients on the white student dummy variable. However, these 

estimates vary substantially in magnitude and rarely reach statistical significance. They 

thus present at most suggestive evidence of any race-match effects. 

Discussion and conclusion 

I contribute to a nascent body of literature studying policy, administration, and 

implementation issues in the expansion of CS education in high schools. I present some 
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of the most detailed evidence to date about who teaches CS courses and whether their 

attributes matter for students’ experiences. I motivate my analysis in terms of prior 

research on teacher effectiveness, but my research questions are important from a policy 

perspective because the success of CS curricular expansions may hinge on how CS 

courses are staffed and how effectively CS teachers are able to deliver students the 

intended benefits of CS education. My results therefore have implications for both 

research and practice. 

A longstanding concern among educators and researchers has been that there is a 

tension between offering additional CS opportunities to students and needing to find 

teachers who are sufficiently qualified to provide those opportunities effectively. I find 

that despite being relatively new courses, CS courses tend to be taught by relatively 

veteran teachers. This is a plausible way to navigate the tensions associated with a 

limited supply of teachers with specialized CS knowledge and skills. Though veteran 

teachers may lack formal experience with or preparation in CS, they may have other 

attributes that make them effective instructors. Indeed, I find that, in part because of 

their reliance on veteran teachers, CS courses are taught by teachers of above average 

experience who are more likely to have a graduate degree and to be NBC. And, at least 

in North Carolina, CS teachers are as or more demographically representative of the 

student population compared to teachers of other courses. 

Previous research suggests that many of these attributes are important in 

teachers, and I find some evidence consistent with this in the case of AP CS courses. 

For example, in at least some models, teachers’ years of prior experience and NBC are 

predictive of students either taking AP exams or scoring higher on those exams. 

However, these results are not entirely consistent, especially in models isolating within-
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school variation, and like many previous studies I do not find that a teacher’s possession 

of a graduate degree benefits their students.  

Additionally, I do not find clear evidence that teachers’ licensure areas predict 

their students’ outcomes, even licensure in computer programming specifically. This is 

again in line with some previous research looking at teacher licensure in other subject 

areas. However, two important caveats bear emphasizing. First, most licenses have little 

substantive alignment to CS content. Thus, even if they are unimportant for student 

outcomes, that does not imply that licenses better aligned to CS course content would 

not matter. Second, the limited number of teachers I observe with the most closely 

aligned license – computer programming – should urge caution when interpreting 

results for that license specifically. 

The detailed data available in North Carolina allow me to investigate these 

issues in ways that have not been possible in previous work on CS teachers. And the 

fact that my results often align with previous findings in other contexts suggests that 

they are likely to generalize to other settings. This, in turn, suggests that my findings 

can inform policymakers and researchers elsewhere.  

Taken together these results suggest that schools’ current approaches to CS 

course staffing are largely reasonable, at least to the extent that CS curricular 

expansions are desirable in the first place. The current approach of many states 

(including North Carolina) to allow CS courses to be taught by teachers without CS-

specific licensure appears to be a reasonable way to allow CS coursework to expand in 

the absence of a dedicated supply of CS teachers. Indeed, this conclusion is bolstered by 

the fact that I explore the importance of teacher qualifications in the context of AP 

courses. To the extent that AP courses are especially advanced, qualifications like 

licensure may matter even less in less advanced, but more common, CS courses.  
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This is not to say that investing in a more specialized CS teacher workforce 

would not be worthwhile for states and school districts. I find some evidence that prior 

CS teaching experience matters for CS teacher effectiveness. Thus, supporting teachers 

as they transition into CS teaching, so that they can accumulate subject-specific 

experience, may be a useful way for schools to develop their CS teaching capacities. 

And, as discussed above, previous research has found in at least some cases that 

subject-specific preparation can matter for teachers.  

Moreover, investing in the CS teacher supply might help to relieve stress on the 

supply of other teachers who appear, in the status quo, to be doing “double duty” as 

teachers of both CS and other subjects. For example, as I show above, a substantial 

minority of CS courses are taught by teachers holding math licenses. Given widespread 

concerns about shortages of math teachers, it is not obvious that schools and students 

benefit on balance from assigning veteran and well-qualified math educators to CS 

classrooms. Alternatively, veteran teachers of other subjects denied the opportunity to 

teach CS may, as a result, exit their school or the profession. In any case administrators 

need to weigh the trade-offs of specific curricular and staff assignment options 

carefully, particularly in cases where the supply of CS, STEM, or CTE teachers is tight. 

I conclude with a final caveat regarding estimates of relationships between 

teacher characteristics and student outcomes, especially in CS contexts. Recent years 

have seen a dramatic increase in the availability of in-service supports for CS teachers. 

These supports are varied and often lack evidence on uptake and effectiveness, so their 

impacts are difficult to describe or anticipate in a general way (Menekse, 2015; Ni, 

Bausch, et al., 2023). While individual programs may be effective, on the whole 

participation in activities like professional development does not appear to have 

consistently large effects on teacher effectiveness (Harris & Sass, 2011; Kirsten et al., 
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2023), suggesting that in-service programs will not substantially affect my analyses. 

However, I cannot rule out the possibility that the availability of in-service training for 

CS teachers – like other unobserved differences between teachers – might affect my 

results. 

This kind of uncertainty, as well as difficulties associated with staffing trade-

offs faced by administrators, point to important areas for future research. My results are 

broadly in line with findings across many studies that teacher effectiveness is not easy 

to predict using observable teacher characteristics. But my results are by no means 

definitive. Most notably, I do not observe teachers being randomly assigned to students, 

nor can I estimate value-added models of teacher effectiveness. I therefore cannot rule 

out the possibility that my estimates of the importance of teacher characteristics for 

student outcomes are biased (e.g., by the availability of in-service supports for CS 

teachers). Indeed, my results are often sensitive to my choice of model specification. 

Future research should investigate CS teacher effectiveness more thoroughly, especially 

since many schools continue to expand – or seek to expand – their CS course offerings. 

This research would especially benefit from explorations of students’ longer-term 

outcomes since CS curricula are so commonly justified in terms of student access to 

specific college curricula and employment opportunities.  
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Who teaches high school computer science and does it matter?  

Online supplementary materials 

Table A1. Summary statistics: courses’ teacher characteristics 

 N Mean SD Min Max 

Female 3457979 0.61 0.49 0 1 

Asian 3392244 0.01 0.09 0 1 

Black 3392244 0.15 0.36 0 1 

Hispanic 3392244 0.02 0.14 0 1 

Native American 3392244 0.01 0.10 0 1 

White 3392244 0.81 0.39 0 1 

Prior Experience (Years) 3382105 13.33 9.65 0 59 

Prior CS Teaching Experience (Years) 3331108 0.02 0.25 0 12 

MA+ 3303785 0.39 0.49 0 1 

National Board Certified 3507645 0.10 0.30 0 1 

Career Technical Education (CTE) Licenses      

CTE Business and IT Education 3384727 0.07 0.25 0 1 

CTE Technology Engineering and Design 

Education 

3384727 0.02 0.13 0 1 

CTE Computer Engineering Technology 3384727 0.00 0.02 0 1 

CTE Network Engineering Technology 3384727 0.00 0.01 0 1 

CTE Computer Programming 3384727 0.00 0.01 0 1 

CTE Scientific and Technical Visualization 3384727 0.00 0.03 0 1 

CTE Project Lead the Way 3384727 0.00 0.04 0 1 

Other CTE 3384727 0.14 0.35 0 1 

Non-CTE Licenses      

Math 3384727 0.15 0.35 0 1 

Business 3384727 0.01 0.11 0 1 

Exceptional Children 3384727 0.13 0.34 0 1 

Science 3384727 0.13 0.33 0 1 

World Language 3384727 0.05 0.23 0 1 

Other Non-CTE 3384727 0.53 0.50 0 1 
Note. CS=Computer science. 

 

 

 

 

 

 

 



50 

 

Table A2. Summary statistics: Advanced Placement computer science (AP CS) courses’ 

teacher and student characteristics 

 N Mean SD Min Max 

Teachers      

Female 854 0.54 0.50 0 1 

Asian 845 0.02 0.14 0 1 

Black 845 0.08 0.26 0 1 

Hispanic 845 0.00 0.05 0 1 

Native American 845 0.01 0.11 0 1 

White 845 0.89 0.31 0 1 

Prior Experience (Years) 761 19.35 9.79 0 41 

Prior CS Teaching Experience (Years) 868 2.51 2.42 0 10 

MA+ 758 0.71 0.45 0 1 

National Board Certified 868 0.22 0.41 0 1 

Career Technical Education (CTE) Licenses      

CTE Business and IT Education 756 0.45 0.50 0 1 

CTE Technology Engineering and Design Education 756 0.10 0.31 0 1 

CTE Computer Engineering Technology 756 0.05 0.21 0 1 

CTE Network Engineering Technology 756 0.01 0.10 0 1 

CTE Computer Programming 756 0.01 0.07 0 1 

CTE Scientific and Technical Visualization 756 0.03 0.18 0 1 

CTE Project Lead the Way 756 0.02 0.13 0 1 

Other CTE 756 0.15 0.36 0 1 

Non-CTE Licenses      

Math 756 0.26 0.44 0 1 

Business 756 0.02 0.13 0 1 

Exceptional Children 756 0.03 0.18 0 1 

Science 756 0.04 0.19 0 1 

World Language 756 0.03 0.18 0 1 

Other Non-CTE 756 0.48 0.50 0 1 

Students      

Grade Level 6457 11.45 0.74 9 12 

Female 6461 0.23 0.42 0 1 

Native American 6439 0.00 0.06 0 1 

Asian 6439 0.14 0.35 0 1 

Hispanic 6439 0.06 0.23 0 1 

Black 6439 0.10 0.30 0 1 

White 6439 0.67 0.47 0 1 

With Disability 6458 0.02 0.14 0 1 

English Learner 6458 0.00 0.06 0 1 

Economically Disadvantaged 6458 0.14 0.35 0 1 

Took AP Exam 6462 0.74 0.44 0 1 

Score on AP Exam 4759 2.51 1.47 1 5 

Mean AP Exam Score in Prior Year 3064 3.31 1.15 1.00 5.00 

Standardized End-of-Grade-8 Math Test Score 5572 1.23 0.84 -2.03 2.97 
Note. Teacher data includes one observation per teacher per course. Licenses included in Table 1 but not 

observed for APCS teachers are not shown. 
 


